Entity Network Extraction Based on Association Finding and Relation Extraction
نویسندگان
چکیده
One of the core aims of semantic search is to directly present users with information instead of lists of documents. Various entity-oriented tasks have been or are being considered, including entity search and related entity finding. In the context of digital libraries for computational humanities, we consider another task, network extraction: given an input entity and a document collection, extract related entities from the collection and present them as a network. We develop a combined approach for entity network extraction that consists of a co-occurrencebased approach to association finding and a machine learning-based approach to relation extraction. We evaluate our approach by comparing the results on a ground truth obtained using a pooling method.
منابع مشابه
Named Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملA Novel Feature-based Approach to Chinese Entity Relation Extraction
Relation extraction is the task of finding semantic relations between two entities from text. In this paper, we propose a novel feature-based Chinese relation extraction approach that explicitly defines and explores nine positional structures between two entities. We also suggest some correction and inference mechanisms based on relation hierarchy and co-reference information etc. The approach ...
متن کاملAn integrated text mining system based on network analysis for knowledge discovery of human gene- disease associations (GenDisFinder)
We introduce an automated text mining tool named ‘GenDisFinder’ that aids in the extraction of human gene-disease associations from biomedical literature and further categorize them as three classes known, inferred or novel using network analysis. The main modules of GenDisFinder are named entity tagging of gene/protein and disease names, gene-disease relation extraction, gene-disease network c...
متن کاملتشخیص اسامی اشخاص با استفاده از تزریق کلمههای نامزد اسم در میدانهای تصادفی شرطی برای زبان عربی
Named Entity Recognition and Extraction are very important tasks for discovering proper names including persons, locations, date, and time, inside electronic textual resources. Accurate named entity recognition system is an essential utility to resolve fundamental problems in question answering systems, summary extraction, information retrieval and extraction, machine translation, video interpr...
متن کاملSEE: Syntax-aware Entity Embedding for Neural Relation Extraction
Distant supervised relation extraction is an efficient approach to scale relation extraction to very large corpora, and has been widely used to find novel relational facts from plain text. Recent studies on neural relation extraction have shown great progress on this task via modeling the sentences in low-dimensional spaces, but seldom considered syntax information to model the entities. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013